
Article

A Weakly Informative Prior for Resonance Frequencies

Marnix Van Soom * and Bart de Boer

Citation: Van Soom, M.; de Boer, B.

A Weakly Informative Prior for

Resonance Frequencies. Proceedings

2021, 1, 0. https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and insti-

tutional affiliations.

Copyright: © 2021 by the authors.

Submitted to Proceedings for possible

open access publication under the

terms and conditions of the Cre-

ative Commons Attribution (CC

BY) license (https://creativecom-

mons.org/licenses/by/ 4.0/).

AI Lab, Vrije Universiteit Brussel. Pleinlaan 2, 1050 Brussels, Belgium.
* Correspondence: marnix@ai.vub.ac.be

Abstract: We derive a weakly informative prior for a set of ordered resonance frequencies from1

Jaynes’ principle of maximum entropy. The prior facilitates model selection problems in which2

both the number and the values of the resonance frequencies are unknown. It encodes a weakly3

inductive bias, provides a reasonable density everywhere, is easily parametrizable, and is easy to4

sample. We hope that this prior can enable the use of robust evidence-based methods for a new5

class of problems, even in the presence of multiplets of arbitrary order.6

Keywords: weakly uninformative prior; resonance frequency; model selection; maximum entropy7

1. Introduction8

An important problem in the natural sciences is the accurate measurement of
resonance frequencies. The problem can be formalized by the following probabilistic
model:

p(D, x|I) = p(D|x)p(x|I) ≡ L(x)π(x), (1)

where D is the data, x = {xk}K
k=1 are the K resonance frequencies of interest, and I is the9

assumed prior information about the possible values of x. Note that we do not condition10

explicitly on other prior information I′, such as the model underlying the data, noise11

properties, and the values of various hyperparameters. As an example instance of (1),12

we refer to the vocal tract resonance (VTR) problem discussed in Section 5, for which13

D is audio recorded from the mouth of a speaker, the x are K VTR frequencies, and the14

underlying model is a sinusoidal regression model. Furthermore, any realistic problem15

will include additional model parameters θ, but these have been silently ignored by16

formally integrating them out of (1), i.e., p(D, x|I) =
∫

dθ p(D, x, θ|I).17

In this paper we assume that the likelihood L(x) ≡ p(D|x) is given and that only18

the prior π(x) ≡ p(x|I) remains to be chosen from knowledge of I. In addition, we are19

interested only in so-called uninformative or weakly informative choices of π, which20

implies that we shall take I to mean only limited prior information about the possible21

values of K and x. In practice, this assumption induces a remarkable conflict between π22

and I, which is that assuming limited prior information I actually precludes the uninformative23

priors π most commonly chosen to express that I.24

The goal of this paper is to describe this conflict and show how it can be resolved25

by adopting a specific choice for π. This allows robust inference of the number of26

resonances K in the important case of limited prior information I, which in turn enables27

accurate measurement of the resonance frequencies x with standard methods such as28

nested sampling [1] or reversible jump MCMC [2].29

2. Notation30

The symbol π is intended to convey a vague notion of a generally uninformative
or weakly informative prior conditioned on limited prior information I. In contrast,
definite choices for π and I are indicated with the subscript i. We consider three of them
in this paper:

πi(x) ≡ p(x|βi, Ii), (i = 1, 2, 3), (2)
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Table 1. The values of the hyperparameters βi used throughout the paper. All quantities are given in units of Hz.

k→ 0 1 2 3 4 5 6 7 8 9 10

a = {ak} 200 600 1400 2900 3500
b = {bk} 1100 3500 4000 4500 5500

x0 = {xk} 200 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

other x0 = 200 xmax = 5500

where βi is a placeholder for the hyperparameter specific to πi. Note that in the plots31

below and for the experiments in Section 5 the values of the βi are always set according32

to Table 1. The conditioning prior information Ii in (2) is characterized in Appendix A.33

Each πi uniquely determines a number of important high-level quantities, since the
likelihood L(x) and data D are assumed given. These quantities are the evidence for the
model with K resonances

Zi(K) =
∫

dKxL(x)πi(x), (3)

the posterior

Pi(x) =
L(x)πi(x)

Zi(K)
, (4)

and the information

Hi(K) =
∫

dKx Pi(x) log
Pi(x)
πi(x)

, (5)

which measures the amount of information obtained by updating from prior πi to34

posterior Pi, i.e., Hi(K) ≡ DKL(Pi|πi), where DKL is the Kullback-Leibler divergence [3].35

3. Conflict36

For convenience, we repeat the conflict as worded in the Introduction here: assuming37

limited prior information I actually precludes the uninformative priors π most commonly chosen38

to express that I. To understand it, we will take a closer look at the two elements involved.39

First, the uninformative priors π in question are of the independent and identically
distributed type,

π(x) =
K

∏
k=1

g(xk|β), (6)

where g(x|β) is any wide distribution with hyperparameters β. A typical choice for g is40

the uniform distribution over the full frequency bandwidth; other examples are diffuse41

Gaussians or Jeffreys priors [e.g., 4–10].42

Second, the limited prior information I about K implies that the problem will involve43

model selection, since each value of K implicitly corresponds to a different model44

for the data [11]. It is thus necessary to evaluate and compare the evidence Z(K) =45 ∫
dKxL(x)π(x) for each plausible K.46

The conflict between these two elements is due to the label switching problem, which
is a well-known issue in mixture modeling [e.g., 12]. The likelihood functions L(x) used
in models parametrized by resonance frequencies are typically invariant to switching
the label k; i.e., the index k of the frequency xk has no distinguishable meaning in the
model underlying the data. The posterior P(x) ∝ L(x)π(x) will inherit this exchange
symmetry if the prior is of type (6). Thus, if the model parameters x are well determined
by the data D, the posterior landscape will consist of one primary mode, which is defined
as a mode living in the ordered region

RK(x0) = {x|x0 ≤ x1 ≤ x2 ≤ · · · ≤ xK} with x0 > 0, (7)
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Figure 1. The label switching problem (P1) and its solution (P3) for a well-determined instance of the VTR problem from
Section 5 with K := 3. The pairwise marginal posteriors Pi(xk, x`) are shown using the isocontours of kernel density
approximations calculated from posterior samples of x. For each panel the diagonal xk = x` is plotted as a dotted line and
the ordered regionR3(x0) is shaded in grey.

and (K!− 1) induced modes, which are identical to the primary mode up to a permutation47

of the labels k and thus live outside of the regionRK(x0). The trouble is that correctly48

taking into account these induced modes during the evaluation of Z(K) requires a49

surprising amount of extra work besides tuning the MCMC method of choice, and that is50

the label switching problem in our setting. In fact there is currently no widely accepted51

solution for the label switching problem in the context of mixture models either [13,14].52

This is, then, how uninformative priors π are “precluded” by the limited information53

I: the latter implies model selection, which in turn implies evaluating Z(K), which is54

hampered by the label switching problem due to the exchange symmetry of the former.55

Therefore, it seems better to try to avoid it by encoding our preference for primary modes56

directly into the prior. This leads to abandoning the uninformative prior π in favor of the57

weakly informative prior π3, which is proposed in Section 4 as a solution to the conflict.58

We use the VTR problem to briefly illustrate the label switching problem in Figure 1.
The likelihood L(x) is described implicitly in Section 5 and is invariant to switching the
labels k because the underlying model function (22) of the regression model is essentially
a sum of sinusoids, one for each xk. As frequencies can be profitably thought of as scale
variables [15, App. A], the uninformative prior (6) is represented by

π1(x) ≡ p(x|x0, xmax, I1) =
K

∏
k=1

h(xk|x0, xmax), (8)

where β1 ≡ (x0, xmax) are a common lower and upper bound, and

h(x|a, b) =

{ 1
log(b/a)

1
x if a ≤ x ≤ b

0 otherwise
with

a > 0

b < ∞
(9)

is the Jeffreys prior, the conventional uninformative prior for a scale variable [16–18]. We59

have visualized the posterior landscape P1(x) in Figure 1 using the pairwise marginal60

posteriors P1(xk, x`) plotted in blue. Note the exchange symmetry of P1, which manifests61

as an (imperfect) reflection symmetry around the dotted diagonal xk = x` bordering the62

ordered regionR3(x0). The primary mode is plotted in orange; all other blue modes are63

induced modes. [This is because it just so happened that the primary mode in P1 was64

missed by the MCMC exploration; while convenient for visualization purposes, this is65

expected behaviour only for K & 4, as the number of induced modes grows as K!.]66
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Figure 2. Representation of π3 by the pairwise marginal priors π3(xk, x`) for the case K := 3, plotted similarly to Figure 1.
The marginal π3(xk, x`) is obtained by integrating out the third frequency; for example, π3(x1, x2) =

∫∫
dx3 π3(x).

3.1. A Simple Way Out?67

A simple way out of the conflict is to break the exchange symmetry by assuming
specialized bounds for each xk:

π2(x) ≡ p(x|a, b, I2) =
K

∏
k=1

h(xk|ak, bk), (10)

where β2 ≡ (a, b) with a = {ak}K
k=1 and b = {bk}K

k=1 are hyperparameters specifying68

the individual bounds. However, in order to enable the model to detect doublets (a69

resolved pair of two close frequencies such as the primary mode in the leftmost panel in70

Figure 1), it is necessary to assign overlapping bounds in (a, b), presumably using some71

heuristic. The necessary degree of overlap increases as the detection of higher order72

multiplets like triplets (which can and do occur) is desired, but the more overlap in (a, b),73

the more the label switching problem returns. Despite this issue, there will be cases74

where we have sufficient prior information I to set the (a, b) hyperparameters without75

too much trouble – in fact, the VTR problem is such a case, for which the overlapping76

values of (a, b) up to K = 5 are given in Table 1.77

4. Solution78

Our solution to the conflict discussed in Section 3 is a chain of K coupled Pareto
distributions:

π3(x) ≡ p(x|x0, I3) =
K

∏
k=1

Pareto(xk|xk−1, λk) (11)

where

Pareto(x|x∗, λ) =

{
λxλ
∗

xλ+1 if x ≥ x∗

0 otherwise
with

x∗ > 0

λ > 0,
(12)

and the hyperparameter β3 ≡ x0 is defined as

x0 ≡ (x0, x), x0 := x0, x = {xk}K
k=1, λk =

xk
xk − xk−1

. (13)

The expression for π3 (11) is the main contribution of the paper; it is derived in Section79

4.1 and illustrated in Figures 2 and 3.80

It can be seen that π3 encodes weakly informative knowledge about K ordered81

frequencies, because (11) and (12) together imply that π3(x) is defined only for x ∈82
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Figure 3. Comparison of π1, π2 and π3 in terms of the marginal priors πi(xk) for the case K := 3. The priors are defined
in (8, 10, 11), respectively. The marginal πi(xk) is obtained by integrating out the two other frequencies; for example,
πi(x1) =

∫∫
dx2 dx3 πi(x).

RK(x0), while nonzero only for x ∈ RK(x0). In other words, its support is precisely the83

ordered regionRK(x0), which solves the label switching problem underlying the conflict84

automatically. This is illustrated in Figure 1, where P3 contracts to a single primary85

mode, which is just what we would like.86

The K + 1 hyperparameters x0 in (13) are a common lower bound x0 plus K expected87

values of the resonance frequencies x. While the former is generally easily determined,88

the latter may seem difficult to set, given the premise of this paper that we dispose89

only of limited prior information I. More precisely, why do we claim that π3 is only90

weakly informative, if it is parametrized by the expected values of the very things it is91

supposed to be only weakly informative about? The answer is that for any reasonable92

amount of data, inference based on π3 is completely insensitive to the exact values93

of x. This fact makes it easy to set x after all, as any reasonable guess will suffice in94

practice. For example, for the VTR problem we simply applied a heuristic where we95

take xk = k× 500 Hz (see Table 1). This insensitivity is due to the maximum entropy96

status of π3, and indicates the weak inductive bias it entails. On a more prosaic level,97

the heavy tails of the Pareto distributions in (11) ensure that the prior will be eventually98

overwhelmed by the data, no matter how a priori improbable the true value of x is.99

More prosaic still, below we show quantitatively that for the VTR problem π3 is about100

as (un)informative as π2 [Figure 5(b)].101

4.1. Derivation of π3102

We now give a rather brief derivation of (11), due to limited space. Our ansatz
consists of interpreting the x as a set of K ordered scale variables which are bounded from
below by x0. Starting from (8) and not bothering with the bounds (a, b), we obtain the
improper pdf

m(x) ∝

{
∏K

k=1
1
xk

x ∈ RK(x0)

0 otherwise.
(14)

We can simplify (14) using the one-to-one transformation x↔ u defined as

x→ u : uk = log
xk

xk−1
(k = 1, 2, . . . , K)

u→ x : xk = x0 exp
k

∑
κ=1

uκ (k = 1, 2, . . . , K)
(15)

which yields (with abuse of notation for brevity)

m(u) ∝

{
1 u ≥ 0

0 otherwise
(16)
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where u ≥ 0 is shorthand for u1 ≥ 0, u2 ≥ 0, . . . , uK ≥ 0.103

Since model selection requires proper priors, we need to normalize m(u) by adding
extra information (i.e., constraints) to it; we propose to simply fix the K first moments
〈u〉 = {〈uk〉}K

k=1. This will yield the Pareto chain prior π3(u) directly, expressed in
u space rather than x space. The expression for π3(u) is found by minimizing the
Kullback-Leibler divergence [19]

DKL(π3|m) =
∫

dKu π3(u) log
π3(u)
m(u)

, subject to 〈u〉 ≡
∫

dKu uπ3(u) = u, (17)

where u = {uk}K
k=1 are the supplied first moments. This variational problem is equiv-

alent to finding π3(u) by means of Jaynes’ principle of maximum entropy [20] with m(u)
serving as the invariant measure [21]. Since the exponential distribution Exp(x|λ) is the
maximum entropy distribution for a random variable x ≥ 0 with a fixed first moment
〈x〉 = 1/λ, the solution to (17) is

π3(u) =
K

∏
k=1

Exp(uk|λk), (18)

where the rate hyperparameters λk = 1/uk and

Exp(x|λ) =
{

λ exp{−λx} if x ≥ 0

0 otherwise
with λ > 0. (19)

Transforming (18) to x space using (15) finally yields (11), but we still need to express
λk in terms of x – we might find it hard to pick reasonable values of uk = log xk/xk−1
from limited prior information I. For this we will need the identity (see Appendix B for
a proof)

〈xk〉 ≡
∫

dKx xkπ3(x) =
λk

λk − 1
〈xk−1〉 (k = 1, 2, . . . , K). (20)

Constraining 〈xk〉 = xk and solving for λk, we obtain λk = xk/(xk − xk−1), in agreement104

with (13). Note that the existence of the first marginal moments 〈xk〉 requires that λk > 1.105

4.2. Sampling from π3106

Sampling from π3 is trivial because of the independence of the uk in u space (18). To107

produce a sample x′ ∼ π3(x) given the hyperparameter x0, compute the corresponding108

rate parameters {λk}K
k=1 from (13), and use them in (18) to obtain a sample u′ ∼ π3(u).109

The desired x′ is then obtained from u′ using the transformation (15).110

Example Python code is given in Appendix C.111

5. Application: The VTR Problem112

We now present a relatively simple – but real – instance of the problem of measuring113

resonance frequencies, which will allow us to illustrate the above ideas. The VTR114

problem consists of measuring human vocal tract resonance (VTR) frequencies x for115

each of five representative vowel sounds taken from the CMU ARCTIC database [22].116

The VTR frequencies x describe the vocal tract transfer function T(x) and are fundamental117

quantities in acoustic phonetics [23]. The five vowel sounds are recorded utterances118

of the first vowel in the words W = {shore, that, you, little, until}. In order to achieve119

high-quality VTR frequency estimates x̂, only the quasi-periodic steady-state part of the120

vowel sound is considered for the measurement. The data D thus consists of a string of121

highly correlated pitch periods. See Figure 4 for an illustration of these concepts.122

The measurement itself is formalized as inference using the probabilistic model (1).
The model assumed to underlie the data is the sinusoidal regression model introduced
in [24]; due to limited space, we only describe it implicitly, because full specification of
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Figure 4. The VTR problem for the case (D := until, K := 10). Left panel: The data D, i.e., the quasi-periodic steady-state
part consisting of 3 highly correlated pitch periods. Right panel: Inferred VTR frequency estimates {x̂k}K

k=1 for K := 10 at 3
sigma. They describe the power spectral density of the vocal tract transfer function |T(x)|2, represented here by 25 posterior
samples and compared to the Fast Fourier Transform (FFT) of D. All x̂k are well resolved and most have error bars too small
to be seen on this scale.

the likelihood L(x) would introduce much superfluous detail. The sinusoidal regression
model assumes each pitch period d ∈ D can be modeled as

dt = f (t; A, α, x) + σet where et ∼ N (0, 1), (t = 1, 2, . . . , T), (21)

where d = {dt}T
t=1 is a time series consisting of T samples. The model function

f (t; A, α, x) =
K

∑
k=1

[Ak cos(xkt) + AK+k sin(xkt)] exp{−αkt}+
L

∑
`=1

A2K+`t`−1 (22)

consists of a sinusoidal part (first ∑) and a polynomial trend correction (second ∑).123

Note the additional model parameters θ = {A, α, σ, L}. Formally, given the prior p(θ)124

[24, Sec. 2.2], the marginal likelihood L(x) is then obtained as L(x) =
∫

dθL(x, θ)p(θ),125

where the complete likelihood L(x, θ) is implicitly given by (21) and (22). Practically, we126

just marginalize out θ from samples obtained from the complete problem p(D, x, θ|I).127

For inference, the computational method of choice is nested sampling [25] using128

the dynesty library [26–30]. Since the VTR problem is quite simple [Hi(K) ∼ 30 nats],129

we only perform single nested sampling runs and take the obtained log Zi(K) and Hi(K)130

as point estimates. Full details on the experiments and data are at https://github.com/131

mvsoom/frequency-prior. Finally, we point out several theoretical connections between132

π3 and important concepts from acoustic phonetics in Appendix D.133

5.1. Experiment I: Comparing π2 and π3134

In Experiment I, we perform a high-level comparison between π2 and π3 in terms
of evidence (3) and information (5). We did not include π1 in this comparison as the label
switching problem prevented convergence of nested sampling runs for K ≥ 4. The
(a, b) bounds for π2 were based on formant tables from several works [31–36]; i.e., we
loosely interpreted the VTRs as formants [37], which dictated that Kmax = 5. For π3 we
simply applied a heuristic where we take xk = k× 500 Hz. We selected x0 empirically
(although a theoretical approach is also possible [38]) and xmax was set to the Nyquist
frequency. The role of xmax is to truncate π3 in order to avoid aliasing effects, since
the support of π3(xi) is unbounded from above. We implemented this by using the
following likelihood function in the nested sampling program:

L′(x) =

{
L(x) if xk ≤ xmax for all (k = 1, 2, . . . , K)

0 otherwise
(23)

Another approach is to truncate π3 directly with rejection sampling; see Appendix C.135

https://github.com/mvsoom/frequency-prior
https://github.com/mvsoom/frequency-prior
https://github.com/mvsoom/frequency-prior
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Figure 5. (a) Model selection in Experiment I (top row) and Experiment II (bottom row). (b) In Experiment I, π2 and π3 are
compared in terms of evidence [log Zi(K)] and uninformativeness [Hi(K)] for each (D, K). The arrows point from π2 to π3

and are color-coded by the value of K. For small values of K, the arrow lengths are too small to be visible on this scale.

First, we compare the influence of π2 and π3 on model selection. Given D ∈W, the
posterior probability of the number of resonances K is given by

pi(K) =
Zi(K)

∑K′ Zi(K′)
(K = 1, 2, . . . , Kmax). (24)

The results in the top row of Figure 5(a) are striking: while p2(K) shows individual136

preferences based on D, p3(K) prefers K = Kmax unequivocally.137

Second, in Figure 5(b) we compare π2 and π3 directly in terms of differences in138

evidence [log Zi(K)] and uninformativeness [Hi(K)] for each combination (D, K).139

Arrows pointing eastward indicate Z3(K) > Z2(K). The π3 prior dominates the π2140

prior in terms of evidence, for almost all values of K, indicating that π3 places its mass141

in regions of higher likelihood; or, equivalently, that the data was much more probable142

under π3 than π2. This implies that the hint of π3 at more structure beyond K > Kmax143

should be taken seriously – we investigate this in Section 5.2.144

Arrows pointing northward indicate H3(K) > H2(K), i.e., π3 is less informative than145

π2, since more information is gained by updating from π3 to P3 than from π2 to P2. It is146

seen that π2 and π3 are roughly comparable in terms of (un)informativeness.147

5.2. Experiment II: ‘Free’ Analysis148

We now freely look for more structure in the data by letting K go up until Kmax = 10.149

This goes beyond the capacities of π1 (because of the label switching problem) and π2150

(because no data is available to set the (a, b) bounds). The great advantage of π3 is thus151

that we can use a simple heuristic to set x0 and let the model do the discovering without152

worrying about convergence issues or the obtained evidence values. The bottom row in153

Figure 5(a) shows that model selection for the VTR problem is well-defined, with the154

most probable values of K ≤ 10, except for D = until. That case is investigated in Figure155

4, where the need for more VTRs (higher K) is apparent from the unmodeled broad peak156

centered at around 3000 Hz in the FFT power spectrum (right panel). Incidentally, this157

spectrum also shows that spectral peaks are often resolved into more than one VTR,158

which underlines the importance of using a prior that enables trouble-free handling of159

multiplets of arbitrary order. A final observation from the spectrum is the fact that the160

inferred x̂k differ substantially from the supplied values in x (Table 1), which hints at the161

weak inductive bias underlying π3.162
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6. Discussion163

It is only when the information in the prior is comparable to the information164

in the data that the prior probability can make any real difference in parameter165

estimation problems or in model selection problems [39, p. 9].166

Alhough the prior π3 is meant to be overwhelmed, its practical advantage (i.e., solving167

the label switching problem) will nonetheless persist, making a “real difference [...] in168

model selection problems” even when “the information in the prior” is much smaller169

than “the information in the data”. In this sense π3 is quite unlike “the prior” referenced170

in the above quote. Since it will be overwhelmed, all it has to do is provide a reasonable171

density everywhere (which it does), and be easily parametrizable (which it is), and be172

easy to sample from (which it is).173

We thus hope that this prior can enable the use of robust evidence-based methods174

for a new class of problems, even in the presence of multiplets of arbitrary order. It175

is valid for any collection of scale variables which are intrinsically ordered, of which176

frequencies and wavelengths seem to be the most natural examples. Some examples of177

recent work where the prior could be applied directly are:178

• Nuclear magnetic resonance (NMR) spectroscopy [40]179

• Resonant ultrasound spectroscopy (a standard method in material science) [41]180

• In the analysis of atomic spectra [42], such as X-ray diffraction [43]181

• Absorption spectral-line finding in astronomy [44]182

• Accurate modeling of instrument noise (in this case LIGO/Virgo noise) [45]183

• Measuring high precision acoustic impedance spectra of the vocal tract [46]184

• Spectral mixture kernels in Gaussian processes [47]185

• Model-based Bayesian analysis in acoustics [48]186
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Appendix A. Characterizing the Limited Prior Information Ii192

The three resonance frequency priors π1, π2, π3 discussed in this paper form a193

sequence of priors that represent states of knowledge I1, I2, I3 that are expected to be194

increasingly informative about the possible values of x.195

The priors are all based on the Jeffreys prior h(x) ∝ 1/x, which, by Jaynes’ transfor-196

mation invariance principle [17,21], represents a state of total ignorance about the scale197

parameter x. This means that we know nothing more than the fact that x is a scale198

parameter for the likelihood L(x).1199

The distributions representing complete ignorance found by Jaynes’ transformation200

invariance principle are improper (not normalizable), and h(x) is no exception to that.201

In Jaynes’ own words, this impropriety “arises simply from the fact that our formulation202

of the notation of complete ignorance was an idealization that does not strictly apply in203

any realistic problem” [21, p. 22]. In other words, h(x) does not represent any realistic204

state of knowledge, and – signaled by the appearance of hyperparameters – information205

must be added to make a normalizable prior out of h(x).206

In the case of π1(x) and π2(x), this extra information comes simply in the form of207

bounds on the range of x, either global (π1) or specialized (π2).208

1 This statement can be made precise in terms of transformation groups; see [49, Sec. 12.4.1]. Bretthorst [50, App. A] shows how (resonance) frequencies
can be interpreted as scale variables by demanding that the likelihood L(x) be invariant in form under a rescaling of the conjugate time variable.
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Table A1. Verbalization of the information represented by the Ii symbols in πi ≡ p(x|βi, Ii).

I1 ≡ x are K scale variables with global bounds (x0, xmax)
ignorance of x within support

I2 ≡ x are K scale variables with specialized bounds (a, b)
ignorance of x within support

I3 ≡ x are K ordered scale variables bounded from below by x0
ignorance of x within support, to the extent that x is expected to be around x

In the case of π3(x), information is added through ordering x (which is a kind209

of bounding) and constraining the first moments 〈x〉 = x using Jaynes’ principle of210

maximum entropy. This in effect ensures that π3 is as ‘spread-out’ as possible while still211

agreeing with the given first moments, which in turn renders inference with π3 highly212

insensitive to the actual values of x supplied in the presence of a reasonable amount of213

data.214

Thus we can characterize the limited prior information Ii by combining the idealized215

ignorance represented by h(x) with the information added for each of the πi to make it216

proper. A summary is given in Table A1.217

Finally, we emphasize that although we have suggestively ordered the priors218

π1, π2, π3 in terms of ‘expected’ increasing informativeness, the actual (un)informativeness219

of a prior Hi(K), as with the evidence Zi(K), depends on the details of the problem at220

hand, including the choice of hyperparameters βi. Indeed, in the particular experiment221

of Section 5.1 we saw that π2 and π3 were comparable in terms of informativeness (while222

π3 dominated π2 in terms of evidence).223

Appendix B. Proof of (20)224

We start out by showing that π3 is consistent under adding a new frequency; i.e.,
marginalizing out the last (highest) frequency is equivalent to having set up π3 without
knowledge of that frequency. Symbolically,

π3(x−K|K) = π3(x−K|K− 1), (A1)

where we have conditioned on K explicitly and used the ‘cavity notation’ x−` =
{xk}k∈{1···K}\{`}, i.e., x−` is x with the `th element missing. The proof of (A1) is trivial:

π3(x−K|K) ≡
∫

dxK π3(x|K) =
∫

dxK

K

∏
k=1

Pareto(xk|xk−1, λk)

=
K−1

∏
k=1

Pareto(xk|xk−1, λk) = π3(x−K|K− 1). (A2)

Next, we prove a special case of (20); namely, for xK:

〈xK|K〉 ≡
∫

dKx xKπ3(x|K)

=
∫

dK−1x−K π3(x−K|K)
∫

dxK xK π3(xK|x−K, K)︸ ︷︷ ︸
= Pareto(xK |xK−1,λK)

=
λK

λK − 1

∫
dK−1x−K xK−1 π3(x−K|K)︸ ︷︷ ︸

= π3(x−K |K−1)

=
λK

λK − 1
〈xK−1|K− 1〉 (A3)
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The proof of (20) for general k ∈ {1, 2, . . . , K} is then completed by noting that225

the special case (A3) actually applies to any value of k, due to the consistency (A1): by226

marginalizing out all higher frequencies {xk+1, xk+2, . . . , xk}we obtain π3(x1, x2, . . . , xk|K) =227

π3(x1, x2, . . . , xk|k), to which (A3) then applies.228

Appendix C. Python Code for Sampling229

230
import numpy as np231

import scipy.stats232

233

def sample(x0 , xbar , size=1):234

K = len(xbar)235

X = [x0, *xbar]236

237

# Calculate scale parameters for the u ~ Exp(beta)238

beta = [(X[k+1] - X[k])/X[k+1] for k in range(K)]239

240

# Draw the u241

u = scipy.stats.expon.rvs(scale=beta , size=(size ,K))242

243

# Transform to x244

x = x0*np.exp(np.cumsum(u, axis=1))245

246

return x # (size , K)247

248

def sample_truncated(x0, xbar , xmax , size=1):249

def get_batch(size):250

x = sample(x0, xbar , size)251

keep = np.all(x <= xmax , axis=1)252

return x[keep ,:]253

254

accept = get_batch(size)255

p = max(accept.shape[0]/size , 1/20)256

257

while accept.shape[0] < size:258

new = int((size - accept.shape[0])/p)259

batch = get_batch(new)260

accept = np.concatenate ((accept , batch), axis=0)261

262

return accept[:size ,:] # (size , K)263264

Appendix D. Interpretation of π3 in Acoustic Phonetics265

It is easily verified that all three priors πi are scale-free distributions, i.e., πi(cx) ∝266

πi(x) with c > 0 [51]. Assuming the uniform scaling hypothesis [e.g., 52], the scale267

transformation x→ cx corresponds to a uniform rescaling of the vocal tract such that its268

length L→ L/c.2 The πi thus succeed in representing information about the resonance269

frequencies x in a way that is independent of the speaker’s vocal tract length, which is the270

major source of inter-speaker variability after vowel type [54].3271

This is true even for π3, despite the increased amount of prior information it would272

typically represent (Table A1); in general, in the maximum entropy framework, the273

symmetries of the invariant measure are not preserved under adding constraints as in274

2 For example, [53] has estimated that L for females is about 20% shorter than L for males, and indeed one finds that on average female formants are
about 20% higher than male ones [52].

3 The scale-free criterion p(cx|β) ∝ p(x|β) is not to be confused with requiring invariance of functional form under a given transformation
{x, β} → {x′, β′} as in Jaynes’ transformation invariance principle (see Appendix A); indeed, the former is much more stringent than the latter. In
Jaynes’ method, invariance of functional form is required under transformations between problems, such that the sample and parameter space {x, β}
are transformed simultaneously [55, App. A]. In contrast, the scale-free criterion only involves a transformation of the sample space x (i.e., x → cx),
without a possible ‘countertransformation’ of the parameter space β→ β′ to ‘compensate’ for the transformation of the sample space. For example,
any distribution of the form p(x|β) = (1/β)h(x/β) (e.g., a zero-mean Gaussian) is invariant in form under {x, β} → {cx, cβ}, while not necessarily
scale-free; in fact, the only one-dimensional scale-free distribution is the Pareto distribution (12) [51].
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(17). That this is not the case for the invariant measure m(u) is due to the fact that the275

scale invariance is built into the x→ u transformation (15).276

Thanks to this built-in quality, the u space is also a “natural space” to describe277

vowel type information [56]. This fact can be exploited, for example, when constructing278

a new prior p(x|x0, X) (where X is a dataset of previously observed x samples such as279

[31]) which is to be informative (for example to represent prior knowledge that the data280

will be a open vowel) but still independent of the speaker’s vocal tract length. This281

can be done by transforming X and processing that information in that space through,282

say, mixture modeling, or maximum entropy density estimation based on empirical283

moments uk [57], and then transforming the obtained density back to obtain the desired284

p(x|x0, X).285

Furthermore, we note that the log ratio transformation uk = log(xk/xk−1) in (15)286

exhibits several useful properties which have been disparately observed in the literature287

of acoustic phonetics. For example, ratios of consecutive frequencies (xk/xk−1) are the288

foundation of formant ratio theory [58]. The log of these ratios, i.e., uk, is the preferred289

representation in Miller’s classical theory of vowel perception [59]. The empirical first290

moments u used in (17) also play a role in vowel normalization methods [60], and we291

note in passing that they avoid the amplification of the error in the frequency in the292

denominator which is “likely to have hampered efforts to normalize for acoustic scale293

using formant ratios” [54, p. 2384].4294

While these connections are of course specific to the domain of acoustic phonetics,295

we might expect similar advantageous connections in other fields where resonance296

frequencies play important roles.297

Appendix D.1. Another Way of Looking at It298

The maximum entropy framework is invariant under transformations, but this does299

not remove the arbitrariness in choosing which moments to fix. This is similar to the fact300

that specifying a flat prior in one coordinate frame is not flat in another: we need to find301

the appropriate coordinate frame, and this choice is ‘arbitrary’; i.e., it is not prescribed by302

probability theory, because it is one of the ways information is encoded into the algebra.303

From this point of view, the previous paragraphs of this Appendix not so much inter-304

pret π3 as answer the question, “why fix the particular moments 〈uk〉 = 〈log(xk/xk−1)〉305

and not any other function of x?” The answer, in short, is that the theoretical properties306

of the function log(xk/xk−1) make its expectation value a meaningful quantity to fix, at307

least within the domain of acoustic phonetics. The fact that the uk = 1/λk are expressible308

in terms of something much more likely to be known, i.e., in terms of x0, is an additional309

convenience.310
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